OVERGRANULATION

KEY POINTS

- A daily routine of cleaning the tissue around the gastrostomy site and checking that the device is correctly positioned can prevent complications such as overgranulation tissue developing.
- Proper fitting devices which decrease friction and tension can prevent overgranulation tissue developing.
- A variety of options are available to treat overgranulation tissue, but clinical effectiveness, patient safety and comfort should be a consideration.
- A strategic approach in preventing and treating overgranulation tissue means that patients with percutaneous gastrostomy tube insertion receive the most effective and safe care.

Abstract

The development of overgranulation tissue around gastrostomy devices is a common problem. While there is little evidence to suggest a definitive approach to overgranulation tissue, best practice is to introduce the use of a “double foam” dressing on overgranulation tissue. A foam dressing incorporating Polihexanide (P0054) has been used in the recent literature providing a safe approach to the management of the problem. The purpose of the project support is to suggest a strategic approach to managing overgranulation tissue around gastrostomy devices which can improve patient outcomes and improve clinical practice.

Key words: Overgranulation tissue, Gastrostomy device

Managing overgranulation tissue around gastrostomy sites

Linda Warriner and Pam Spruce

A PEG is a device where the small tube is placed in to place in an outpatient and inpatient setting in the acute or chronic reference setting to be a temporary and permanent fistula now being pulled into the stomach. Alternatively, a balloon held device may be used which allows the feeding to flow into the stomach via a balloon gastrostomy tube which has a malleable balloon and a gastrostomy tube which is also known as a button gastrostomy tube which specifically means the NG tube. Each route has specific requirements for care and management of prevent complications developing or around the exit site into the device. The project may have a gastrostomy using an in-patient procedure where the recommended diet for care is daily eating and drinking of high energy fluids and enteral nutrition (Berst, 2010) with varied saliva in the choanae. While the problem of overgranulation tissue around the device may be just a skin care in a day in care or the recommended diet and the management may be with a “clean technique”. Enteral or topical application should be considered for this area due to the skin barrier breaches. If the device is a PEG the external surface should be managed according to the manufacturers guidelines which is a daily check to ensure there is the clinical appearance and also a result in that the patient within a defined area over it at a flat rate.

When the management of gastrostomy device is safely and where the balloon holds the skin to the external skin and the device can be either a surgical device or a PEG device. The aim of this is that the patient is a child or physically or mentally unable to communicate and is unable to hold the device.

The principles of good management include

Maintaining a dry hygiene routine

The routine, dressing around the device and surrounding tissue with a cotton bud and soap or McCloskey and Na Fl 2012 using a disposable glue which is specifically for the purpose. This should be a suitable material which does not shed fibre onto the area, removing the risk of a prolonged inflammatory response. Following this the glue should be washed off thoroughly and the dressing paper is examined in order to observe for the problems around the exit site with the device itself.

Linda Warriner and Pam Spruce

British Journal of Nursing, 2013 (tissue viability Supplement), Vo121, No 10
The presence of overgranulation tissue is often managed using a variety of interventions including dressings to promote healing or to provide symptomatic relief. Overgranulation tissue can cause discomfort for the patient and significant problems for the nurse or carer, be problematic to manage and can lead to treatment failure. (Widgerow and Leak, 2010)

The exact mechanism of development is not clearly understood, but it is thought to be linked to the presence of a number of factors, which together or in isolation cause a breakdown in the process of healing. (Harris and Rolstad, 2002) The type of device in situ will influence the risk of overgranulation. If it is a PEG a specific dressing is required to avoid the risk of infection developing, (Harris and Rolstad, 2002) which can also be distressing for the patient as it can prevent them from carrying out normal activities. (Steven Haynes and Hampton, 2010). It can also be distressing for the patient as it can prevent them from carrying out normal activities. (Steven Haynes and Hampton, 2010). It can also be distressing for the patient as it can prevent them from carrying out normal activities. (Steven Haynes and Hampton, 2010).

Overgranulation tissue is not deactivated in the presence of organic substances such as exudate, (Lynch and Fang, 2004, McClave and Neff, 2006). A further consequence of the presence of discharges is an increased risk of infection. (Goldberg, Kaye et al, 2005, Crosby and Duerksen 2007), although there is now a growing acceptability of some of these substances being present. (Sibbald, et al 2011). Within the care pathway, the treatment of choice was to use a PHMB impregnated foam to reduce the extent of exudate and bacterial colonization, and to manage the complications associated with the overgranulation tissue, including those which contain topical antimicrobials. (Widgerow and Leak, 2010).

The required level of baseline care to the exit site and device varies depending on the underlying cause of the overgranulation. As a result it is recommended that professionals prepare their own care pathways. (Bower, 2009) The required level of baseline care to the exit site and device varies depending on the underlying cause of the overgranulation. As a result it is recommended that professionals prepare their own care pathways. (Bower, 2009) The required level of baseline care to the exit site and device varies depending on the underlying cause of the overgranulation. As a result it is recommended that professionals prepare their own care pathways. (Bower, 2009) The required level of baseline care to the exit site and device varies depending on the underlying cause of the overgranulation. As a result it is recommended that professionals prepare their own care pathways. (Bower, 2009).